Фастерм термопанели официальный сайт: Термопанели «Фастерм» — купить фасадные панели для утепления и отделки фасада дома от производителя

Содержание

Монтаж термопанелей — Самостоятельная установка фасадных панелей


Из этой статьи Вы узнаете:

  • »  Установка стартовой планки.
  • »  Монтаж фасадных элементов.
  • »  Крепление фасадных элементов.
  • »  Уплотнение фасадной системы с помощью полиуретановой пены.
  • »  Изготовление резаных фасадных элементов.
  • »  Затирка стыковочных швов.
  • »  Полная затирка швов.


Монтаж фасадных панелей производится в следующем порядке:

  1. Установка стартовой планки(цокольный профиль).
  2. Сверление отверстий под дюбели, намеченные в монтажных отверстиях швах.
  3. Нанесение монтажной пены на тыльную сторону(утеплитель) по периметру и по диагоналям панели.
  4. Крепление фасадных элементов с помощью дюбелей сквозь просверленные отверстия.
  5. Укладка слоя монтажной пены в местах стыковки следующей панели.
  6. Затирка швов.


Установка стартовой планки.


Цокольный профиль устанавливается по уровню и служит стартовой рейкой и отливом для дождевой воды. Рекомендуется закреплять стартовую планку на 10 см ниже нулевой отметки (уровень пола утепляемого помещения), чтобы избежать «мостиков холода». Крепление производится с шагом 30-50 см при помощи дюбелей. Рейки на углах стыкуются косым срезом. 



ВАЖНО!


При монтаже цокольных термопанелей необходимо оставлять зазор между стартовым уголком и отмосткой, во избежание деформации всей системы под воздействием грунта.


Монтаж фасадных элементов.


Монтаж системы всегда начинают от угла здания. После того,как отбита на основании стартовая отметка и установлен цокольный профиль или монтажная опора, при помощи отвеса отмечают высоту первого ряда фасадных элементов. В случае неровности стены необходимо установить вертикальные маяки в местах соединения фасадных элементов.             Перед установкой под каждую панель нижнего ряда по цокольному профилю прокладывают валик полиуретановой пены.Панели устанавливают на угол здания (с опорой на цокольный профиль или временную монтажную рейку),обеспечивая расстояние между стыком угловых панелей для заполнения затирочным составом, предварительно обрезав края панелей под углом 45º,закрепляют дюбелями. Далее ведется монтаж граничащих панелей стык в стык(технологический зазор под затирочный состав предусмотрен конструкционными особенностями панели). В той же последовательности ведется монтаж элементов следующих рядов.


Крепление фасадных элементов.




Фасадный дюбель



Нагель по бетону


На лицевой стороне панелей имеются монтажные отверстия. Все отверстия, предназначенные для крепления дюбелями, сверлятся на глубину, на 2-3 см превышающую длину крепежного элемента.  Дюбель устанавливается в отверстие от руки. При этом шляпка дюбеля утапливается в шов между облицовочными плитками, распорный элемент-шуруп вставляется в дюбель и заворачивается при помощи шуруповерта с отрегулированным усилием крутящего момента,во избежании порчи панели в результате чрезмерного давления.




Дюбель устанавливается так, чтобы его шляпка легла в специальную выемку монтажном отверстии.Повреждение пластмассовой головки гвоздя не допускается. Крепление панелей дюбелями необходимо выполнять в процессе монтажа сразу после установки каждого отдельного элемента.


Уплотнение фасадной системы с помощью полиуретановой пены.


Для нанесения пены применяется специальный пистолет для баллонов с полиуретановой пеной.На каждую панель перед монтажом на тыльную сторону(утеплитель)наносится валик из пены по периметру и по диагоналям. После монтажа каждой панели в местах стыковки следующей, укладывается валик из пены для устранения возможных мостиков холода в местах соединения. Уплотнение по контуру панелей производится по мере установки каждой отдельной панели.  


ВНИМАНИЕ! Необходимо применять пену с низким коэффициентом вторичного расширения. При температуре ниже плюс 5ºС  необходимо применять зимнюю пену.


Изготовление резаных фасадных элементов.


При облицовке фасадов возникает необходимость резать панели по месту примыкания к проемам, углам и архитектурным деталям. Для этой цели на строительном участке применяется угловая шлифовальная машина или камнерез.


    Подрезка термопанелей


    Также с помощью угловой шлифовальной машины восстанавливают на резаных краях вертикальные швы (или половинки швов), срезая тонкую полоску облицовочной плитки, по ширине соответствующую швам на панели.


    Затирка швов может осуществляться двумя способами:

    • затирка стыковочных швов

    • полная затирка швов


    Затирка стыковочных швов.


    Затирка стыковочных швов – экономичный способ отделки фасада, при которой затираются места стыковки панелей друг к другу и монтажные отверстия.


    Затирку стыковочных швов рекомендуется применять в  том случае, если в настоящий момент не имеется возможности  по погодным или  финансовым соображениям осуществить полную затирку швов. А так же когда к фасаду здания не предъявляются высокие эстетические  требования.


    Плюсы: небольшой расход затирочной смеси, небольшое количество время и трудоемкость.


    Минусы: стыковочные швы могут стать заметны в процессе эксплуатации,  или при выпадении осадков и забивки пылью в процессе производства работ и высыхания, а также при не соблюдении технологии затирки.


    Затирочная смесь «ФАСТЕРМ» укладывается при помощи пистолета  для  герметика в стыковочный, обеспыленный и увлажненный паз по периметру панели. В зависимости от температуры окружающей среды, потребуется время для начала схватывания состава(ориентировочно 5-20 мин. ) после этого кельмой для затирки, ширина которой должна соответствовать размеру швов, разгладить затирку до получения равномерно уложенной гладкой поверхности, при необходимости кельму можно смачивать водой.После того как затирочная смесь подсохла, необходимо удалить, при помощи сухой или влажной ветоши, остатки смеси с лицевой поверхности панели. Не рекомендуется замывать затертые швы.


    Полная затирка швов.


    Полная затирка швов – наиболее предпочтительный финишный способ отделки фасада, при применении которого , здание получает вид кирпичного дома, идеальной лицевой кладки.


    Плюсы: внешний вид не отличим от домов, построенных из облицовочного кирпича, в то же время имеет более благородный вид идеальной кирпичной кладки; разнообразные варианты дизайна, за счет применения цветной затирки, исходя из ваших предпочтений; заполненные стыковочные и межкирпичные швы обеспечивают более надежную защиту стыков  и адгезию к панелям.


    Минусы: отсутствуют.


    Затирочная смесь «ФАСТЕРМ» укладывается при помощи пистолета  для  герметика в стыковочный и меж кирпичный швы, обеспечивая достаточное заполнение. В зависимости от температуры окружающей среды, потребуется время для начала схватывания состава(ориентировочно 5-20 мин.) после этого кельмой для затирки швов, ширина которой должна соответствовать размеру швов, разгладить затирку до получения равномерно уложенной гладкой поверхности.Равномерность нанесения раствора а также последующей обработки кельмой, является гарантией однородности цвета швов. Толщина слоя заполненного шва должна составлять  не менее 3 мм. После того как затирочная смесь подсохла, необходимо удалить, при помощи сухой или влажной ветоши, остатки смеси с лицевой поверхности панели.



    Не разрешается проводить затирочные работы при температуре воздуха и основания ниже + 5ºС и выше + 30ºС. В летнее(жаркое) время работы желательно проводить в утренние и вечерние часы, когда воздействие солнечного света не такое интенсивное.



    Свежезаполненные швы следует беречь от быстрого высыхания и неблагоприятных погодных условий (интенсивного солнечного воздействия, мороза, осадков и т.д.). В случае необходимости следует закрыть их пленкой.

    Затирка швов  (видео-инструкция)

    ФАСТЕРМ (Краснодар) — официальный сайт, адрес, телефон — ID167357

    • Пожаловаться

    Контакты ФАСТЕРМ


    • Телефон:
      +7 (988) 244-26-40
    • Email: Написать
    • Веб-сайт: Перейти
    • Представитель компании на сайте: ФАСТЕРМ (ФАСТЕРМ)
    • Фактический адрес: г. Краснодар, ул. Бородинская, 154

    ФАСТЕРМ расположена по адресу г. Краснодар, ул. Бородинская, 154. Юридический адрес компании: . Основными видами деятельности ФАСТЕРМ являются:
    Фасадные панели .

    На сайте Проминдекс можно связаться с представителем организации ФАСТЕРМ (ФАСТЕРМ) по телефону: +7 (988) 244-26-40 или по электронной почте Написать. На официальном сайте ФАСТЕРМ, указанном в контактах, узнайте подробную информацию о деятельности и режиме работы организации.

    Описание


    Оптовая и розничная продажа фасадных материалов. Применение фасадной термопанели «ФАСТЕРМ», значительно упрощает и удешевляет процедуру фасадных работ и дает возможность решать одновременно две задачи.

    ФАСТЕРМ на карте


    Телефонные номера с этой страницы:
    79882442640

    На сайте с 15 авг 2017

    Новые товары и услуги компании

    1 объявление

    Все объявления компании

    Отзывы о ФАСТЕРМ

    Сферы деятельности ФАСТЕРМ

    Похожие компании

    Казанова Ксения

    Дмитрий

    Новиков Александр Иванович

    Руслан Рузалевич Халиуллин

    Батыр

    • Карточка компании

    • Объявления компании

    Солнечная энергия в США

    Офис технологий солнечной энергии

    Солнечная энергия более доступная, доступная и распространенная в Соединенных Штатах, чем когда-либо прежде. С 0,34 ГВт в 2008 году мощность солнечной энергетики в США сегодня выросла примерно до 97,2 гигаватт (ГВт). Этого достаточно для питания 18 миллионов средних американских домов. Сегодня более 3% электроэнергии в США поступает от солнечной энергии в виде солнечной фотоэлектрической энергии (PV) и концентрации солнечной тепловой энергии (CSP).

    С 2014 года средняя стоимость солнечных фотоэлектрических панелей снизилась почти на 70%. Рынки солнечной энергии быстро развиваются по всей стране, поскольку солнечная электроэнергия в настоящее время экономически конкурентоспособна с традиционными источниками энергии в большинстве штатов.

    Изобилие и потенциал солнечной энергии в Соединенных Штатах ошеломляют: фотоэлектрические панели всего на 22 000 квадратных миль от общей площади страны — размером примерно с озеро Мичиган — могли бы обеспечить электричеством, достаточным для питания всех Соединенных Штатов. Солнечные панели также можно устанавливать на крышах, практически не затрагивая землепользование, и, по прогнозам, к 2030 году более чем в каждом седьмом доме в США будет установлена ​​солнечная фотоэлектрическая система на крыше9. 0003

    CSP — это еще один метод получения солнечной энергии мощностью около 1,8 ГВт в США. Стоимость электроэнергии на электростанциях CSP упала более чем на 50 % с 2010 по 2020 год. Исследования показывают, что если цели по снижению затрат на CSP будут достигнуты, к 2050 году они смогут обеспечить до 158 ГВт электроэнергии в США.

    Более того, солнечная энергетика проверенный инкубатор для роста рабочих мест по всей стране. За последнее десятилетие количество рабочих мест в солнечной энергетике в США увеличилось на 167%, что в пять раз превышает общий темп роста занятости в экономике США. В Соединенных Штатах работает более 250 000 работников солнечной энергетики, работающих в областях, охватывающих производство, монтаж, разработку проектов, торговлю, дистрибуцию и многое другое.

    Солнечная энергия еще не полностью реализовала свой потенциал в качестве экологически чистого источника энергии для Соединенных Штатов, и предстоит проделать значительную работу, чтобы стимулировать развертывание солнечных технологий. Затраты на солнечное оборудование резко упали, но рыночные барьеры и проблемы с интеграцией в сеть продолжают препятствовать более широкому внедрению. Неаппаратные солнечные «мягкие затраты», такие как разрешения, финансирование и привлечение клиентов, становятся все более значительной долей в общей стоимости солнечной энергии и в настоящее время составляют до 65% стоимости бытовой фотоэлектрической системы. Технологические достижения и инновационные рыночные решения по-прежнему необходимы для повышения эффективности, снижения затрат и предоставления коммунальным предприятиям возможности полагаться на солнечную энергию для базовой нагрузки.

    В сентябре 2021 года Министерство энергетики опубликовало отчет Solar Futures Study , в котором исследуется роль солнечной энергии в достижении этих целей как части обезуглероженной электросети США.

    Дополнительная информация

    Ознакомьтесь с последними новостями о рынке солнечной энергии в Ежеквартальном бюллетене солнечной промышленности Национальной лаборатории возобновляемых источников энергии.

    Узнайте больше о целях, поставленных Управлением технологий солнечной энергии Министерства энергетики США (SETO) по внедрению инноваций и сокращению затрат.

    Загрузите отчет «Исследование будущего солнечной энергетики ».

    Узнайте больше о SETO, его областях исследований и о том, как работает солнечная энергия.

    Активное солнечное отопление | Министерство энергетики

    Энергосбережение

    Изображение

    Активные системы солнечного отопления используют солнечную энергию для нагрева жидкости — жидкости или воздуха — и затем передают солнечное тепло непосредственно во внутреннее пространство или в систему хранения для последующего использования. Если солнечная система не может обеспечить адекватный обогрев помещения, вспомогательная или резервная система обеспечивает дополнительное тепло. Жидкостные системы чаще используются, когда предусмотрено хранение, и они хорошо подходят для систем лучистого отопления, бойлеров с радиаторами горячей воды и даже абсорбционных тепловых насосов и охладителей. Как жидкостные, так и воздушные системы могут дополнять системы с принудительной подачей воздуха.

    Жидкостное активное солнечное отопление

    Солнечные коллекторы жидкости лучше всего подходят для центрального отопления. Они такие же, как те, которые используются в системах солнечного нагрева воды для бытовых нужд. Плоские коллекторы являются наиболее распространенными, но также доступны вакуумные трубчатые и концентрирующие коллекторы. В коллекторе теплоноситель или «рабочая» жидкость, такая как вода, антифриз (обычно нетоксичный пропиленгликоль) или другой тип жидкости, поглощает солнечное тепло. В соответствующее время контроллер включает циркуляционный насос для перемещения жидкости через коллектор.

    Жидкость течет быстро, поэтому ее температура увеличивается только на 10–20 °F (5,6–11 °C) по мере прохождения через коллектор. Нагрев меньшего объема жидкости до более высокой температуры увеличивает потери тепла от коллектора и снижает эффективность системы. Жидкость поступает либо в резервуар для хранения, либо в теплообменник для немедленного использования. Другие компоненты системы включают трубопроводы, насосы, клапаны, расширительный бак, теплообменник, накопительный бак и элементы управления.

    Расход зависит от теплоносителя. Чтобы узнать больше о типах жидких солнечных коллекторов, их размерах, техническом обслуживании и других вопросах, см. Солнечный нагрев воды.

    Сохранение тепла в жидких системах

    Жидкостные системы аккумулируют солнечное тепло в резервуарах с водой или в кладочной массе системы излучающих плит. В системах хранения резервуарного типа тепло от рабочей жидкости передается распределительной жидкости в теплообменнике снаружи или внутри резервуара.

    Резервуары находятся под давлением или без давления, в зависимости от общей конструкции системы. Прежде чем выбрать накопительный бак, учитывайте стоимость, размер, долговечность, где его разместить (в подвале или на улице) и как его установить. Возможно, вам придется построить резервуар на месте, если резервуар необходимого размера не пройдет через существующие дверные проемы. Резервуары также имеют ограничения по температуре и давлению и должны соответствовать местным строительным, сантехническим и механическим нормам. Вы также должны отметить, какая изоляция необходима для предотвращения чрезмерных потерь тепла, и какое защитное покрытие или герметизация необходимы для предотвращения коррозии или утечек.

    В системах с очень большими объемами хранения могут потребоваться специальные или нестандартные резервуары. Обычно это нержавеющая сталь, стекловолокно или высокотемпературный пластик. Бетонные и деревянные (джакузи) резервуары также являются вариантами. Каждый тип резервуара имеет свои преимущества и недостатки, и все типы требуют тщательного размещения из-за их размера и веса. Может оказаться более практичным использовать несколько небольших резервуаров, а не один большой. Самый простой вариант системы аккумулирования – использование стандартных бытовых водонагревателей. Они соответствуют строительным нормам и требованиям к сосудам под давлением, имеют антикоррозийное покрытие и просты в установке.

    Распределение тепла для жидкостных систем

    Для распределения солнечного тепла можно использовать теплый пол, плинтусы или радиаторы с подогревом воды или центральную систему принудительной вентиляции. В системе лучистого пола нагретая солнцем жидкость циркулирует по трубам, встроенным в пол из тонких бетонных плит, которые затем излучают тепло в помещение. Лучистый теплый пол идеально подходит для жидкостных солнечных систем, поскольку он хорошо работает при относительно низких температурах. Тщательно спроектированная система может не нуждаться в отдельном баке для хранения тепла, хотя в большинстве систем они предусмотрены для контроля температуры. Обычный котел или даже стандартный бытовой водонагреватель может обеспечивать резервное тепло. Плита обычно отделана плиткой. Системам излучающих плит требуется больше времени для обогрева дома с «холодного старта», чем другим типам систем распределения тепла. Однако, когда они работают, они обеспечивают постоянный уровень тепла. Ковры и коврики снижают эффективность системы. Дополнительную информацию см. в разделе лучистое отопление.

    Плинтусы и радиаторы с подогревом воды требуют воды температурой от 71° до 82°C (от 160° до 180°F) для эффективного обогрева помещения. Как правило, плоские коллекторы жидкости нагревают перекачиваемую и распределяющую жидкость до температуры от 90° до 120°F (от 32° до 49°C). Таким образом, использование плинтусов или радиаторов с системой солнечного отопления требует, чтобы площадь поверхности плинтуса или радиаторов была больше, температура нагреваемой солнцем жидкости повышалась за счет резервной системы или среднетемпературного солнечного коллектора (например, вакуумного коллектора). трубчатый коллектор) можно заменить плоским коллектором.

    Существует несколько вариантов включения жидкостной системы в систему воздушного отопления. Базовая конструкция заключается в размещении жидкостно-воздушного теплообменника или нагревательного змеевика в главном возвратном канале комнатного воздуха до того, как он попадет в печь. Воздух, возвращающийся из жилого помещения, нагревается, проходя над нагретой солнечным светом жидкостью в теплообменнике. Дополнительное тепло подается по мере необходимости от печи. Змеевик должен быть достаточно большим, чтобы передавать достаточное количество тепла воздуху при самой низкой рабочей температуре коллектора.

    Вентиляция

    Солнечные воздушные системы отопления используют воздух в качестве рабочего тела для поглощения и передачи солнечной энергии. Солнечные коллекторы воздуха могут напрямую обогревать отдельные помещения или потенциально могут предварительно нагревать воздух, поступающий в вентилятор с рекуперацией тепла или через воздушный змеевик теплового насоса с источником воздуха.

    Воздушные коллекторы производят тепло раньше и позже в течение дня, чем жидкостные системы, поэтому они могут производить больше полезной энергии в течение отопительного сезона, чем жидкостные системы того же размера. Также, в отличие от жидкостных систем, воздушные системы не замерзают, а небольшие протечки в коллекторе или распределительных каналах не вызовут значительных проблем, хотя и ухудшат работу. Однако воздух является менее эффективным теплоносителем, чем жидкость, поэтому солнечные коллекторы воздуха работают с меньшей эффективностью, чем солнечные коллекторы жидкости.

    Хотя некоторые ранние системы пропускали нагретый солнцем воздух через скальное ложе в качестве накопителя энергии, этот подход не рекомендуется из-за связанной с этим неэффективности, потенциальных проблем с конденсацией и плесенью в скальном ложе, а также воздействия влаги и плесень влияет на качество воздуха в помещении.

    Солнечные коллекторы воздуха часто встраивают в стены или крыши, чтобы скрыть их внешний вид. Например, в черепичную крышу могут быть встроены воздушные пути для использования тепла, поглощаемого черепицей.

    Обогреватели воздуха в помещении

    Воздухосборники могут быть установлены на крыше или наружной (южной) стене для обогрева одного или нескольких помещений. Несмотря на то, что доступны заводские коллекторы для установки на месте, самодельщики могут выбрать сборку и установку собственного воздухосборника. Простой коллектор оконного обогревателя можно сделать за несколько сотен долларов.

    Коллектор имеет герметичный и изолированный металлический каркас и черную металлическую пластину для поглощения тепла с остеклением перед ней. Солнечное излучение нагревает пластину, которая, в свою очередь, нагревает воздух в коллекторе. Электрический вентилятор или воздуходувка вытягивает воздух из помещения через коллектор и нагнетает его обратно в помещение. Крышные коллекторы требуют воздуховодов для подачи воздуха между помещением и коллектором. Настенные коллекторы размещаются непосредственно на стене, выходящей на юг, и в стене прорезаются отверстия для входа и выхода воздуха коллектора.

    Простые «коллекторы оконных коробок» встраиваются в существующий оконный проем. Они могут быть активными (с помощью вентилятора) или пассивными. В пассивных типах воздух поступает снизу коллектора, по мере нагрева поднимается вверх и поступает в помещение. Дефлектор или заслонка не дает комнатному воздуху поступать обратно в панель (обратное термосифонирование), когда не светит солнце. Эти системы обеспечивают только небольшое количество тепла, потому что площадь коллектора относительно мала.

    Коллекторы испаряемого воздуха

    Коллекторы вытяжного воздуха используют простую технологию для улавливания солнечного тепла для обогрева зданий. Коллекторы состоят из темных перфорированных металлических пластин, установленных на южной стене здания. Между старой стеной и новым фасадом создается воздушное пространство. Темный внешний фасад поглощает солнечную энергию и быстро нагревается в солнечные дни, даже когда снаружи холодно.

    Вентилятор или воздуходувка втягивает вентиляционный воздух в здание через крошечные отверстия в коллекторах и вверх через воздушное пространство между коллекторами и южной стеной. Солнечная энергия, поглощаемая коллекторами, нагревает воздух, проходящий через них, на целых 40°F. В отличие от других технологий обогрева помещений, коллекторы вытяжного воздуха не требуют дорогостоящего остекления.

    Коллекторы вытяжного воздуха лучше всего подходят для больших зданий с высокой вентиляционной нагрузкой, что делает их непригодными для современных плотно закрытых домов. Тем не менее, небольшие коллекторы испаряемого воздуха могут использоваться для предварительного нагрева воздуха, поступающего в вентилятор с рекуперацией тепла, или могут нагревать воздушный змеевик на воздушном тепловом насосе, повышая его эффективность и уровень комфорта в холодные дни. Однако в настоящее время нет информации о рентабельности использования коллектора выдыхаемого воздуха таким образом.

    Экономика и другие преимущества активных систем солнечного отопления

    Активные системы солнечного отопления наиболее рентабельны в холодном климате с хорошими солнечными ресурсами, когда они заменяют более дорогие виды топлива для отопления, такие как электричество, пропан и нефть. Некоторые штаты предлагают освобождение от налога с продаж, кредиты или вычеты по подоходному налогу, а также освобождение или вычеты от налога на имущество для систем солнечной энергии. Здесь можно добавить предложение: Список стимулов для энергоэффективности и возобновляемых источников энергии, включая активную солнечную тепловую энергию, доступен на сайте DSIRE.

    Стоимость активной солнечной системы отопления будет варьироваться. На имеющиеся в продаже коллекторы распространяется гарантия 10 и более лет, и они легко прослужат десятилетиями дольше. Экономика активной системы отопления помещений улучшается, если она также нагревает воду для бытовых нужд, потому что в противном случае неиспользуемый коллектор может нагревать воду летом.

    Отопление дома с помощью активной системы солнечной энергии может значительно сократить расходы на топливо зимой. Солнечная система отопления также уменьшит загрязнение воздуха и парниковые газы, возникающие в результате использования ископаемого топлива для отопления или производства электроэнергии.

    Выбор и определение размеров системы солнечного отопления

    Выбор подходящей системы солнечной энергии зависит от таких факторов, как местоположение, дизайн и потребности в отоплении вашего дома. Местные соглашения могут ограничивать ваши возможности; например, ассоциации домовладельцев могут запретить вам устанавливать солнечные коллекторы в определенных частях вашего дома (хотя многим домовладельцам удалось оспорить такие соглашения).

    Местный климат, тип и эффективность коллектора(ов) и площадь коллектора определяют, сколько тепла может обеспечить система солнечного отопления. Обычно наиболее экономично проектировать активную систему, обеспечивающую от 40% до 80% потребности дома в отоплении. Системы, обеспечивающие менее 40% тепла дома, редко бывают рентабельными, за исключением случаев использования солнечных коллекторов для обогрева воздуха, которые обогревают одну или две комнаты и не требуют накопления тепла. Хорошо спроектированный и изолированный дом, в котором используются методы пассивного солнечного отопления, потребует меньшей и менее дорогостоящей системы отопления любого типа и может нуждаться в очень небольшом дополнительном тепле, кроме солнечного.

    Помимо того факта, что разработка активной системы для подачи достаточного количества тепла в течение 100% времени, как правило, нецелесообразна или экономически неэффективна, большинство строительных норм и правил и ипотечных кредиторов требуют наличия резервной системы отопления. Дополнительные или резервные системы поставляют тепло, когда солнечная система не может удовлетворить потребности в отоплении. Резервные копии могут варьироваться от дровяной печи до обычной системы центрального отопления.

    Строительные нормы, соглашения и правила для систем солнечного отопления

    Прежде чем устанавливать солнечную энергетическую систему, вы должны изучить местные строительные нормы и правила, постановления о зонировании и соглашения о подразделении, а также любые специальные правила, относящиеся к месту. Вам, вероятно, потребуется разрешение на строительство, чтобы установить систему солнечной энергии в существующем здании.

    В то время как большинство сообществ и муниципалитетов приветствуют жилые установки возобновляемой энергии, есть несколько, для которых системы возобновляемой энергии являются сравнительной новинкой, и поэтому они, возможно, не упомянули их в своих кодексах. Вы должны соблюдать существующие строительные и разрешительные процедуры для установки вашей системы.

    Вопросы строительных норм и правил зонирования для установки солнечной системы обычно решаются на местном уровне. Даже если в штате действуют строительные нормы и правила, ваш город, округ или округ обычно соблюдает их. Общие проблемы, с которыми домовладельцы столкнулись со строительными нормами, включают следующее:

    • Превышение нагрузки на крышу
    • Недопустимые теплообменники
    • Неправильная проводка
    • Незаконное вмешательство в систему снабжения питьевой водой.

    Потенциальные проблемы зонирования включают следующее:

    • Загромождение боковых дворов
    • Возведение незаконных выступов на крышах
    • Установка системы слишком близко к улицам или границам участков.

    Особые нормативные акты, такие как соглашения местного сообщества, подразделения или ассоциации домовладельцев, также требуют соблюдения. Эти соглашения, правила исторического района и положения о поймах можно легко упустить из виду. Чтобы узнать, что необходимо для соблюдения требований местного законодательства, свяжитесь с отделами по зонированию и контролю за строительством в вашей местной юрисдикции, а также с любыми соответствующими домовладельцами, подразделениями, соседями и/или общественными ассоциациями.

    Элементы управления для систем солнечного отопления

    Средства управления системами солнечного отопления обычно более сложны, чем средства управления традиционной системой отопления, поскольку они должны анализировать больше сигналов и управлять большим количеством устройств (включая обычную резервную систему отопления). Солнечные элементы управления используют датчики, переключатели и/или двигатели для управления системой. Система использует другие элементы управления для предотвращения замерзания или чрезмерно высоких температур в коллекторах.

    Сердцем системы управления является дифференциальный термостат, который измеряет разницу температур между коллекторами и накопителем. Когда коллекторы на 10–20 °F (от 5,6 ° до 11 °C) теплее, чем накопительный блок, термостат включает насос или вентилятор для циркуляции воды или воздуха через коллектор для нагрева накопительной среды или дома.

    Работа, производительность и стоимость этих элементов управления различаются. Некоторые системы управления контролируют температуру в различных частях системы, чтобы определить, как она работает. Самые сложные системы используют микропроцессоры для управления и оптимизации теплопередачи и доставки тепла в хранилище и зоны дома.

    Можно использовать солнечную панель для питания низковольтных вентиляторов постоянного тока (постоянного тока) (для коллекторов воздуха) или насосов (для коллекторов жидкости). Выходная мощность солнечных панелей соответствует доступному притоку солнечного тепла к солнечному коллектору. При тщательном выборе размеров скорость вентилятора или насоса оптимизируется для эффективного поглощения солнечной энергии рабочей жидкостью. При слабом солнечном свете скорость вентилятора или насоса низкая, а при сильном солнечном свете они работают быстрее.

    При использовании с комнатным воздухосборником отдельные элементы управления могут не потребоваться. Это также гарантирует, что система будет работать в случае отключения электроэнергии. Солнечная энергетическая система с аккумуляторной батареей также может обеспечивать питание для работы системы центрального отопления, хотя это дорого для больших систем.

    Установка и обслуживание вашей системы солнечного отопления

    Насколько хорошо работает система активной солнечной энергии, зависит от правильного выбора места, конструкции системы и установки, а также от качества и долговечности компонентов. Современные коллекторы и элементы управления отличаются высоким качеством, но поиск опытного подрядчика, который сможет правильно спроектировать и установить систему, может оказаться сложной задачей.

    После установки системы ее необходимо надлежащим образом обслуживать, чтобы оптимизировать ее работу и избежать поломок. Разные системы требуют разных типов обслуживания, и вам следует настроить календарь, в котором перечислены задачи обслуживания, которые производители компонентов и установщики рекомендуют для вашей установки.